Using Dark Energy Explorers and Machine Learning to Enhance the Hobby–Eberly Telescope Dark Energy Experiment

Author:

House Lindsay R.ORCID,Gebhardt KarlORCID,Finkelstein KeelyORCID,Cooper Erin MentuchORCID,Davis DustinORCID,Ciardullo RobinORCID,Farrow Daniel JORCID,Finkelstein Steven L.ORCID,Gronwall CarylORCID,Jeong DonghuiORCID,Johnson L. CliftonORCID,Liu ChenxuORCID,Thomas Benjamin P.ORCID,Zeimann GregoryORCID

Abstract

Abstract We present analysis using a citizen science campaign to improve the cosmological measures from the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the Hubble expansion rate, H(z), and angular diameter distance, D A(z), at z = 2.4, each to percent-level accuracy. This accuracy is determined primarily from the total number of detected Lyα emitters (LAEs), the false positive rate due to noise, and the contamination due to [O ii] emitting galaxies. This paper presents the citizen science project, Dark Energy Explorers (https://www.zooniverse.org/projects/erinmc/dark-energy-explorers), with the goal of increasing the number of LAEs and decreasing the number of false positives due to noise and the [O ii] galaxies. Initial analysis shows that citizen science is an efficient and effective tool for classification most accurately done by the human eye, especially in combination with unsupervised machine learning. Three aspects from the citizen science campaign that have the most impact are (1) identifying individual problems with detections, (2) providing a clean sample with 100% visual identification above a signal-to-noise cut, and (3) providing labels for machine-learning efforts. Since the end of 2022, Dark Energy Explorers has collected over three and a half million classifications by 11,000 volunteers in over 85 different countries around the world. By incorporating the results of the Dark Energy Explorers, we expect to improve the accuracy on the D A(z) and H(z) parameters at z = 2.″4 by 10%–30%. While the primary goal is to improve on HETDEX, Dark Energy Explorers has already proven to be a uniquely powerful tool for science advancement and increasing accessibility to science worldwide.

Funder

National Science Foundation

NASA ∣ Office of STEM Engagement

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disentanglement of the chemodynamical assembly: mapping the Milky Way discs;Monthly Notices of the Royal Astronomical Society;2024-04-17

2. Tor-Quest (The Onion Router Crawler);2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3