Strong Fractionation of Deuterium and Helium in Sub-Neptune Atmospheres along the Radius Valley

Author:

Cherubim CollinORCID,Wordsworth Robin,Hu RenyuORCID,Shkolnik Evgenya

Abstract

Abstract We simulate atmospheric fractionation in escaping planetary atmospheres using IsoFATE, a new open-source numerical model. We expand the parameter space studied previously to planets with tenuous atmospheres that exhibit the greatest helium and deuterium enhancement. We simulate the effects of extreme-ultraviolet-driven photoevaporation and core-powered mass loss on deuterium–hydrogen and helium–hydrogen fractionation of sub-Neptune atmospheres around G, K, and M stars. Our simulations predict prominent populations of deuterium- and helium-enhanced planets along the upper edge of the radius valley with mean equilibrium temperatures of ≈370 K and as low as 150 K across stellar types. We find that fractionation is mechanism dependent, so constraining He/H and D/H abundances in sub-Neptune atmospheres offers a unique strategy to investigate the origin of the radius valley around low-mass stars. Fractionation is also strongly dependent on retained atmospheric mass, offering a proxy for planetary surface pressure as well as a way to distinguish between desiccated enveloped terrestrials and water worlds. Deuterium-enhanced planets tend to be helium dominated and CH4 depleted, providing a promising strategy to observe HDO in the 3.7 μm window. We present a list of promising targets for observational follow-up.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3