Statistical Analysis of Lunar 1 Hz Waves Using ARTEMIS Observations

Author:

Lou Yuequn,Gu XudongORCID,Cao XingORCID,Wu MingyuORCID,Xiao Sudong,Wang GuoqiangORCID,Ni BinbinORCID,Zhang Tielong

Abstract

Abstract Like 1 Hz waves occurring in the upstream of various celestial bodies in the solar system, 1 Hz narrowband whistler-mode waves are often observed around the Moon. However, wave properties have not been thoroughly investigated, which makes it difficult to proclaim the generation mechanism of the waves. Using 5.5 yr wave data from ARTEMIS, we perform a detailed investigation of 1 Hz waves in the near-lunar space. The amplitude of lunar 1 Hz waves is generally 0.05–0.1 nT. In the geocentric solar ecliptic coordinates, the waves show no significant regional differentiation pattern but show an absence inside the magnetosphere. Correspondingly, in the selenocentric solar ecliptic coordinates, the waves can occur extensively at ∼1.1–12 RL, while few events are observed in the lunar wake due to a lack of interaction with the solar wind. Furthermore, the wave distributions exhibit modest day–night and dawn–dusk asymmetries but less apparent north–south asymmetry. Compared with the nightside, more intense waves with lower peak wave frequency are present on the dayside. The preferential distribution of 1 Hz waves exhibits a moderate correlation with strong magnetic anomalies. The waves propagate primarily at wave normal angles <60° with an ellipticity of [−0.8, −0.3]. For stronger wave amplitudes and lower latitudes, 1 Hz waves generally have smaller wave normal angles and become more left-hand circularly polarized. Owing to the unique interaction between the Moon and solar wind, our statistical results might provide new insights into the generation mechanism(s) of 1 Hz waves in planetary plasma environments and promote the understanding of lunar plasma dynamics.

Funder

National Natural Science Foundation of China

China National Space Administration

MOE ∣ Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3