Fuzzy Cluster Analysis: Application to Determining Metallicities for Very Metal-poor Stars

Author:

Li HainingORCID

Abstract

Abstract This work presents a first attempt to apply fuzzy cluster analysis (FCA) to analyzing stellar spectra. FCA is adopted to categorize line indices measured from LAMOST low-resolution spectra, and automatically remove the least metallicity-sensitive indices. The FCA-processed indices are then transferred to the artificial neural network (ANN) to derive metallicities for 147 very metal-poor (VMP) stars that have been analyzed by high-resolution spectroscopy. The FCA-ANN method could derive robust metallicities for VMP stars, with a precision of ∼0.2 dex compared with high-resolution analysis. The recommended FCA threshold value λ for this test is between 0.9965 and 0.9975. After reducing the dimension of the line indices through FCA, the derived metallicities are still robust, with no loss of accuracy, and the FCA-ANN method performs stably for different spectral quality from [Fe/H] ∼ −1.8 down to −3.5. Compared with traditional classification methods, FCA considers ambiguity in groupings and noncontinuity of data, and is thus more suitable for observational data analysis. Though this early test uses FCA to analyze low-resolution spectra, and feeds the input to the ANN method to derive metallicities, FCA should be able to, in the large data era, also analyze slitless spectroscopy and multiband photometry, and prepare the input for methods not limited to ANN, in the field of stellar physics for other studies, e.g., stellar classification, identification of peculiar objects. The literature-collected high-resolution sample can help improve pipelines to derive stellar metallicities, and systematic offsets in metallicities for VMP stars for three published LAMOST catalogs have been discussed.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

National Key R&D Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3