Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5

Author:

Liu Feng-YuanORCID,Dai Y. SophiaORCID,Omont AlainORCID,Liu DaizhongORCID,Cox PierreORCID,Neri RobertoORCID,Krips Melanie,Yang ChentaoORCID,Wu Xue-BingORCID,Huang Jia-ShengORCID

Abstract

Abstract Some high-z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L IR of >1013 L . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– L CO ( 1 0 ) diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of μ M H 2 0.8 9.7 × 10 10 M (with α = 0.8 M K km s 1 pc 2 1 , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates (μSFRs) to be ∼400–2500 M yr−1, with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems.

Funder

National Key R&D Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3