Formation of c-C6H5CN Ice Using the SPACE TIGER Experimental Setup

Author:

Maksyutenko Pavlo,Martín-Doménech RafaelORCID,Piacentino Elettra L.ORCID,Öberg Karin I.ORCID,Rajappan MaheshORCID

Abstract

Abstract Benzonitrile (c-C6H5CN) has been recently detected in cold and dense regions of the interstellar medium, where it has been used as a signpost of a rich aromatic organic chemistry that might lead to the production of polycyclic aromatic hydrocarbons. One possible origin of this benzonitrile is interstellar ice chemistry involving benzene (c-C6H6) and nitrile molecules (organic molecules containing the −C≡N group). We have addressed the plausibility of this c-C6H5CN formation pathway through laboratory experiments using our new setup SPACE TIGER. The SPACE TIGER experimental setup is designed to explore the physics and chemistry of interstellar ice mantles using laser-based ice processing and product detection methods. We have found that c-C6H5CN is formed upon irradiation of c-C6H6:CH3CN binary ice mixtures with 2 keV electrons and Lyα photons at low temperatures (4−10 K). Formation of c-C6H5CN was also observed when c-C6H6 and CH3CN were embedded in a CO ice matrix, but it was efficiently quenched in a H2O ice matrix. The results presented in this work imply that interstellar ice chemistry involving benzene and nitrile molecules could contribute to the formation of the observed benzonitrile only if these species are present on top of the ice mantles or embedded in the CO-rich ice layer, instead of being mixed into the H2O-rich ice layer.

Funder

Simons Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3