Photospheric Prompt Emission From Long Gamma Ray Burst Simulations. II. Spectropolarimetry

Author:

Parsotan Tyler,Lazzati Davide

Abstract

Abstract Although gamma ray bursts (GRBs) have been detected for many decades, the lack of knowledge regarding the radiation mechanism that produces the energetic flash of radiation, or prompt emission, from these events has prevented the full use of GRBs as probes of high-energy astrophysical processes. While there are multiple models that attempt to describe the prompt emission, each model can be tuned to account for observed GRB characteristics in the gamma and X-ray energy bands. One energy range that has not been fully explored for the purpose of prompt emission model comparison is that of the optical band, especially with regard to polarization. Here, we use an improved Monte Carlo radiation transfer code to calculate the expected photospheric optical and gamma-ray polarization signatures (Πopt and Π γ , respectively) from a set of two relativistic hydrodynamic long GRB simulations, which emulate a constant and variable jet. We find that time-resolved Πopt can be large (∼75%) while time-integrated Πopt can be smaller due to integration over the asymmetries in the GRB jet where optical photons originate; Π γ follows a similar evolution as Πopt with smaller polarization degrees. We also show that Πopt and Π γ agree well with observations in each energy range. Additionally, we make predictions for the expected polarization of GRBs based on their location within the Yonetoku relationship. While improvements can be made to our analyses and predictions, they exhibit the insight that global radiative transfer simulations of GRB jets can provide with respect to current and future observations.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3