Abstract
Abstract
We present 870 μm Atacama Large Millimeter/submillimeter Array polarization observations of thermal dust emission from the iconic, edge-on debris disk β Pic. While the spatially resolved map does not exhibit detectable polarized dust emission, we detect polarization at the ∼3σ level when averaging the emission across the entire disk. The corresponding polarization fraction is P
frac = 0.51% ± 0.19%. The polarization position angle χ is aligned with the minor axis of the disk, as expected from models of dust grains aligned via radiative alignment torques (RAT) with respect to a toroidal magnetic field (B-RAT) or with respect to the anisotropy in the radiation field (k-RAT). When averaging the polarized emission across the outer versus inner thirds of the disk, we find that the polarization arises primarily from the SW third. We perform synthetic observations assuming grain alignment via both k-RAT and B-RAT. Both models produce polarization fractions close to our observed value when the emission is averaged across the entire disk. When we average the models in the inner versus outer thirds of the disk, we find that k-RAT is the likely mechanism producing the polarized emission in β Pic. A comparison of timescales relevant to grain alignment also yields the same conclusion. For dust grains with realistic aspect ratios (i.e., s > 1.1), our models imply low grain-alignment efficiencies.
Funder
National Science Foundation
MEXT ∣ Japan Society for the Promotion of Science
National Aeronautics and Space Administration
Research Corporation for Science Advancement
European Southern Observatory
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献