Identifying Galaxy Mergers in Simulated CEERS NIRCam Images Using Random Forests

Author:

Rose CaitlinORCID,Kartaltepe Jeyhan S.ORCID,Snyder Gregory F.ORCID,Rodriguez-Gomez VicenteORCID,Yung L. Y. AaronORCID,Arrabal Haro PabloORCID,Bagley Micaela B.ORCID,Calabró AntonelloORCID,Cleri Nikko J.ORCID,Cooper M. C.ORCID,Costantin LucaORCID,Croton DarrenORCID,Dickinson MarkORCID,Finkelstein Steven L.ORCID,Häußler BorisORCID,Holwerda Benne W.ORCID,Koekemoer Anton M.ORCID,Kurczynski PeterORCID,Lucas Ray A.ORCID,Mantha Kameswara Bharadwaj,Papovich CaseyORCID,Pérez-González Pablo G.ORCID,Pirzkal NorORCID,Somerville Rachel S.ORCID,Straughn Amber N.ORCID,Tacchella SandroORCID

Abstract

Abstract Identifying merging galaxies is an important—but difficult—step in galaxy evolution studies. We present random forest (RF) classifications of galaxy mergers from simulated JWST images based on various standard morphological parameters. We describe (a) constructing the simulated images from IllustrisTNG and the Santa Cruz SAM and modifying them to mimic future CEERS observations and nearly noiseless observations, (b) measuring morphological parameters from these images, and (c) constructing and training the RFs using the merger history information for the simulated galaxies available from IllustrisTNG. The RFs correctly classify ∼60% of non-merging and merging galaxies across 0.5 < z < 4.0. Rest-frame asymmetry parameters appear more important for lower-redshift merger classifications, while rest-frame bulge and clump parameters appear more important for higher-redshift classifications. Adjusting the classification probability threshold does not improve the performance of the forests. Finally, the shape and slope of the resulting merger fraction and merger rate derived from the RF classifications match with theoretical Illustris predictions but are underestimated by a factor of ∼0.5.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3