Rotation Measure Variations and Reversals of Repeating FRBs in Massive Binary Systems

Author:

Zhao Z. Y.ORCID,Zhang G. Q.ORCID,Wang F. Y.ORCID,Dai Z. G.ORCID

Abstract

Abstract Recent observations discovered that some repeating fast radio bursts (FRBs) show complicated variations and reversals of Faraday rotation measures (RMs), indicating that the sources of these FRBs are embedded in a dynamically magnetized environment. One possible scenario is that repeating FRBs are generated by pulsars in binary systems, especially containing a high-mass companion with strong stellar outflows. Here we study the RM variations caused by stellar winds and a possible stellar disk. If the magnetic field is radial in the stellar wind, RMs will not reverse except if the magnetic axis inclination angle is close to 90°. For the toroidal magnetic field in the wind, RMs will reverse at the superconjunction. For the case of the toroidal field in the disk, the RM variations may have a multimodal and multiple reversal profile because the radio signals travel through different components of the disk during periastron passage. We also apply this model to FRB 20180916B. By assuming that its 16.35 day period is from a slowly rotating or freely precessing magnetar, we find that the secular RM variation can be explained by the periastron passage of a magnetar in a massive binary system. In addition, the clumps in the stellar wind and disk can cause short timescale (<1 day) variations or reversals of RM. Therefore, long-term monitoring of RM variations can reveal the environments of repeating FRBs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3