Very-high-energy Gamma-Ray Afterglows of GRB 201015A and GRB 201216C

Author:

Zhang Lu-LuORCID,Ren JiaORCID,Wang YunORCID,Liang En-WeiORCID

Abstract

Abstract Gamma-ray bursts (GRBs) 201015A and 201216C are valuable cases where very-high-energy (VHE) gamma-ray afterglows have been detected. By analyzing their prompt emission data, we find that GRB 201216C is an extremely energetic, long GRB with a hard gamma-ray spectrum, while GRB 201015A is a relative subenergetic, soft-spectrum GRB. Attributing their radio–optical–X-ray afterglows to the synchrotron radiation of the relativistic electrons accelerated in their jets, we fit their afterglow lightcurves with the standard external shock model and infer their VHE afterglows from the synchrotron self-Compton scattering process of the electrons. It is found that the jet of GRB 201015A is midrelativistic (Γ0 = 44), surrounded by a very dense medium (n = 1202 cm−3), and the jet of GRB 201216C is ultrarelativistic (Γ0 = 331), surrounded by a moderate dense medium (n = 5 cm−3). The inferred peak luminosity of the VHE gamma-ray afterglows of GRB 201216C is approximately 10−9 erg cm−2 s−1 at 57–600 s after the GRB trigger, making it detectable with the MAGIC telescopes at a high confidence level, even though the GRB is at a redshift of 1.1. Comparing their intrinsic VHE gamma-ray lightcurves and spectral energy distributions with GRBs 180720B, 190114C, and 190829A, we show that their intrinsic peak luminosity of VHE gamma-ray afterglows at 104 s after the GRB trigger is variable from 1045 to 5 × 1048 erg s−1, and their kinetic energy, initial Lorentz factor, and medium density are diverse among bursts.

Funder

NSFC

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GRB 201015A: from seconds to months of optical monitoring and supernova discovery;Monthly Notices of the Royal Astronomical Society;2023-12-23

2. Black hole growths in gamma-ray bursts driven by the Blandford–Znajek mechanism;Monthly Notices of the Royal Astronomical Society;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3