Field-aligned and Magnetic Reconnection Flows in a Magnetohydrodynamic Simulation of Prominence-cavity System

Author:

Liu TieORCID,Su YingnaORCID,Guo YangORCID,Zhao JieORCID,Ji HaishengORCID

Abstract

Abstract Nested ring-shaped line-of-sight (LOS) oriented flows in coronal cavities have been observed in recent years but rarely explained. Using a magnetohydrodynamic simulation of a prominence-cavity system, we investigate the relationship between the simulated field-aligned flows, magnetic reconnection flows, and the LOS-oriented flows observed by the Coronal Multi-Channel Polarimeter. The field-aligned flows are along magnetic field lines toward the dips and driven by the hydrodynamic forces exerted by the prominence condensation. The reconnection flows are driven by the overlying reconnection and tether-cutting reconnection. The velocity of the reconnection flows increases from the quasi-static phase to the fast-rise phase, reaching several kilometers per second, which is similar to the speed of the field-aligned flows. We calculate the synthetic Doppler images by forward modeling and compare them with the observed LOS-oriented flows. The synthetic images show that the LOS-oriented flows of one ring with opposite internal flow driven by the field-aligned flows are identified in the simulation. And the synthetic images integrated along three different LOSs can resemble the observed direction reversal of the LOS-oriented flow in about 20 hr, when the included angle of two adjacent LOSs is about 10°. These results suggest that the observed LOS-oriented flows of one ring with an opposite internal flow may be explained by the LOS integration effect of field-aligned flows along different loops.

Funder

National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotational Flows in Solar Coronal Flux Rope Cavities;The Astrophysical Journal Letters;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3