Supercriticality of the Dynamo Limits the Memory of the Polar Field to One Cycle

Author:

Kumar Pawan,Karak Bidya BinayORCID,Vashishth Vindya

Abstract

Abstract The polar magnetic field precursor is considered to be the most robust and physics-based method for the prediction of the next solar cycle strength. However, to make a reliable prediction of a cycle, is the polar field at the solar minimum of the previous cycle enough or do we need the polar field of many previous cycles? To answer this question, we performed several simulations using Babcock–Leighton-type flux-transport dynamo models with a stochastically forced source for the poloidal field (α term). We show that when the dynamo is operating near the critical dynamo transition or only weakly supercritical, the polar field of cycle n determines the amplitude of the next several cycles (at least three). However, when the dynamo is substantially supercritical, this correlation of the polar field is reduced to one cycle. This change in the memory of the polar field from multiple to one cycle with the increase of the supercriticality of the dynamo is independent of the importance of various turbulent transport processes in the model. Our this conclusion contradicts the existing idea. We further show that when the dynamo operates near the critical transition, it produces frequent extended episodes of weaker activity, resembling the solar grand minima. The occurrence of grand minima is accompanied by the multicycle correlation of the polar field. The frequency of grand minima decreases with the increase of supercriticality of the dynamo.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3