Global Electron Thermodynamics in Radiatively Inefficient Accretion Flows

Author:

Satapathy KaushikORCID,Psaltis DimitriosORCID,Özel FeryalORCID

Abstract

Abstract In the collisionless plasmas of radiatively inefficient accretion flows, heating and acceleration of ions and electrons are not well understood. Recent studies in the gyrokinetic limit revealed the importance of incorporating both the compressive and Alfvénic cascades when calculating the partition of dissipated energy between the plasma species. In this paper, we use a covariant analytic model of the accretion flow to explore the impact of compressive and Alfvénic heating, Coulomb collisions, compressional heating, and radiative cooling on the radial temperature profiles of ions and electrons. We show that, independent of the partition of heat between the plasma species, even a small fraction of turbulent energy dissipated to the electrons makes their temperature scale with a virial profile and the ion-to-electron temperature ratio smaller than in the case of pure Coulomb heating. In contrast, the presence of compressive cascades makes this ratio larger because compressive turbulent energy is channeled primarily into the ions. We calculate the ion-to-electron temperature in the inner accretion flow for a broad range of plasma properties, mass accretion rates, and black hole spins and show that it ranges between 5 ≲ T i /T e ≲ 40. We provide a physically motivated expression for this ratio that can be used to calculate observables from simulations of black hole accretion flows for a wide range of conditions.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3