Cross-correlation of Far-infrared Background Anisotropies and CMB Lensing from Herschel and Planck Satellites

Author:

Cao Ye,Gong YanORCID,Feng Chang,Cooray Asantha,Cheng Gong,Chen XueleiORCID

Abstract

Abstract The cosmic infrared background (CIB) anisotropies and cosmic microwave background (CMB) lensing are powerful measurements for exploring cosmological and astrophysical problems. In this work, we measure the autocorrelation power spectrum of the CIB anisotropies in the Herschel–SPIRE HerMES Large Mode Survey (HeLMS) field, and the cross-power spectrum with the CMB lensing measurements from the Planck satellite. The HeLMS field covers more than 270 deg2, which is much larger than in previous analysis. We use the Herschel Level 1 time stream data to merge the CIB maps at 250, 350, and 500 μm bands, and mask the areas where the flux is greater than or there are no measured data. We obtain the final CIB power spectra at 100 ≤  ≤ 20,000 by considering several effects, such as beam function, mode coupling, transfer function, and so on. We also calculate the theoretical CIB auto- and cross-power spectra of CIB and CMB lensing by assuming that the CIB emissivity follows a Gaussian distribution in redshift. We find that, for the CIB auto-power spectra, we obtain signal-to-noise ratios (S/Ns) of 15.9, 15.7, and 15.3 at 250, 350, and 500 μm, and for the CIB ⨯ CMB lensing power spectra, S/Ns of 7.5, 7.0, and 6.2 at 250, 350, and 500 μm, respectively. Comparing to previous works, the constraints on the relevant CIB parameters are improved by factors of 2– 5 in this study.

Funder

NSFC

CAS Strategic Priority Research Program

NSFC-ISF joint research program

MOST

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecast of Joint Analysis of Cosmic Shear and Supernovae Magnification from the CSST and LSST;The Astrophysical Journal;2024-07-01

2. LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB;Journal of Cosmology and Astroparticle Physics;2024-06-01

3. The star formation, dust, and abundance of galaxies with unWISE-CIB cross-correlations;Journal of Cosmology and Astroparticle Physics;2024-05-01

4. Agora: Multicomponent simulation for cross-survey science;Monthly Notices of the Royal Astronomical Society;2024-04-18

5. Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4;Journal of Cosmology and Astroparticle Physics;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3