Formation of Gaps in Self-gravitating Debris Disks by Secular Resonance in a Single-planet System. I. A Simplified Model

Author:

Sefilian Antranik A.ORCID,Rafikov Roman R.ORCID,Wyatt Mark C.ORCID

Abstract

Abstract Spatially resolved images of debris disks frequently reveal complex morphologies such as gaps, spirals, and warps. Most existing models for explaining such morphologies focus on the role of massive perturbers (i.e., planets, stellar companions), ignoring the gravitational effects of the disk itself. Here we investigate the secular interaction between an eccentric planet and a massive, external debris disk using a simple analytical model. Our framework accounts for both the gravitational coupling between the disk and the planet, as well as the disk self-gravity—with the limitation that it ignores the non-axisymmetric component of the disk (self-)gravity. We find generally that even when the disk is less massive than the planet, the system may feature secular resonances within the disk (contrary to what may be naively expected), where planetesimal eccentricities get significantly excited. Given this outcome, we propose that double-ringed debris disks, such as those around HD 107146 and HD 92945, could be the result of secular resonances with a yet-undetected planet interior to the disk. We characterize the dependence of the properties of the secular resonances (i.e., locations, timescales, and widths) on the planet and disk parameters, finding that the mechanism is robust provided the disk is massive enough. As an example, we apply our results to HD 107146 and find that this mechanism readily produces ∼20 au wide non-axisymmetric gaps. Our results may be used to set constraints on the total mass of double-ringed debris disks. We demonstrate this for HD 206893, for which we infer a disk mass of ≈170M by considering perturbations from the known brown dwarf companion.

Funder

Bill and Melinda Gates Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Massive Debris Disks May Hinder Secular Stirring by Planetary Companions: An Analytic Proof of Concept;The Astrophysical Journal;2024-04-30

2. The Influence of Cold Jupiters in the Formation of Close-in Planets. I. Planetesimal Transport;The Astrophysical Journal;2023-12-29

3. Why dust pressure matters in debris discs;Monthly Notices of the Royal Astronomical Society: Letters;2023-12-27

4. The effect of sculpting planets on the steepness of debris-disc inner edges;Monthly Notices of the Royal Astronomical Society;2023-11-08

5. Self-gravity of debris discs can strongly change the outcomes of interactions with inclined planets;Monthly Notices of the Royal Astronomical Society;2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3