Refining the E + A Galaxy: A Spatially Resolved Spectrophotometric Sample of Nearby Post-starburst Systems in SDSS-IV MaNGA (MPL-5)

Author:

Greene Olivia A.ORCID,Anderson Miguel R.,Marinelli MariarosaORCID,Holley-Bockelmann KellyORCID,Campbell Lauren E. P.,Liu Charles T.ORCID

Abstract

Abstract Post-starburst galaxies are crucial to disentangling the effect of star formation and quenching on galaxy demographics. They comprise, however, a heterogeneous population of objects, described in numerous ways. To obtain a well-defined and uncontaminated sample, we take advantage of spatially resolved spectroscopy to construct an unambiguous sample of E + A galaxies—post-starburst systems with no observed ongoing star formation. Using data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Survey, in the fourth generation of the Sloan Digital Sky Survey (SDSS-IV), we have identified 30 E + A galaxies that lie within the green valley of color–stellar mass space. We first identified E + A candidates by their central, single-fiber spectra and (ur) color from SDSS DR15, and then further required each galaxy to exhibit E + A properties throughout the entirety of the system to three effective radii. We describe our selection criteria in detail, note common pitfalls in E + A identification, and introduce the basic characteristics of the sample. We will use this E + A sample, which has been assembled with stringent criteria and thus re-establishes a well-defined subpopulation within the broader category of post-starburst galaxies, to study the evolution of galaxies and their stellar populations in the time just after star formation within them is fully quenched.

Funder

National Science Foundation

Alfred P. Sloan Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3