Abstract
Abstract
We observed the high-mass protostellar core G335.579–0.272 ALMA1 at ∼200 au (0.″05) resolution with the Atacama Large Millimeter/submillimeter Array (ALMA) at 226 GHz (with a mass sensitivity of 5σ = 0.2 M
⊙ at 10 K). We discovered that at least a binary system is forming inside this region, with an additional nearby bow-like structure (≲1000 au) that could add an additional member to the stellar system. These three sources are located at the center of the gravitational potential well of the ALMA1 region and the larger MM1 cluster. The emission from CH3OH (and many other tracers) is extended (>1000 au), revealing a common envelope toward the binary system. We use CH2CHCN line emission to estimate an inclination angle of the rotation axis of 26° with respect to the line of sight based on geometric assumptions and derive a kinematic mass of the primary source (protostar+disk) of 3.0 M
⊙ within a radius of 230 au. Using SiO emission, we find that the primary source drives the large-scale outflow revealed by previous observations. Precession of the binary system likely produces a change in orientation between the outflow at small scales observed here and large scales observed in previous works. The bow structure may have originated from the entrainment of matter into the envelope due to the widening or precession of the outflow, or, alternatively, an accretion streamer dominated by the gravity of the central sources. An additional third source, forming due to instabilities in the streamer, cannot be ruled out as a temperature gradient is needed to produce the observed absorption spectra.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献