Nonthermal Acceleration of Electrons, Positrons, and Protons at a Nonrelativistic Quasi-parallel Collisionless Shock

Author:

Yu Huan,Xia Qi,Fang JunORCID

Abstract

Abstract Energetic positrons have been observed in the interstellar medium, and high-energy positrons with relativistic energies up to approximately 1 TeV have been detected in Galactic cosmic rays. We conducted a study on the acceleration of particles, specifically positrons, in a nonrelativistic quasi-parallel collisionless shock induced by a plasma consisting of protons, electrons, and positrons. The positron-to-proton number density ratio in the plasma is 0.1. We focused on a representative shock with a sonic Mach number of 17.1 and an Alfvénic Mach number of 16.8 in the rest frame of the shock. To investigate the acceleration mechanisms of particles including positrons in the shock, we utilized 1D particle-in-cell simulations. It was found that all three species of particles in the shock can be accelerated and exhibit power-law spectra. At the shock front, a significant portion of incoming upstream particles are reflected and undergo significant energy increases, and these reflected particles can be efficiently injected into the process of diffusive shock acceleration (DSA). Moveover, the reflected positrons can be further accelerated by an electric field parallel to the magnetic field when they move along the magnetic field upstream of the shock. As a result, positrons can be preferentially accelerated to be injected in the DSA process compared to electrons.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3