Abstract
Abstract
We present the high time resolution in situ observations of coherent one-dimensional magnetic-field-aligned Langmuir wave packets with well-defined low frequency modulations (beats) in the upstream region of a coronal mass ejection driven supercritical quasi-perpendicular interplanetary (IP) shock. We show that these beat-type waveforms provide what is believed to be the first observational evidence for one of the most important three wave interactions, called the electrostatic decay instability (ESD)
L
→
L
′
+
S
(L is the pump Langmuir wave excited by the shock accelerated electron beam, and L′ and S are the daughter Langmuir and ion sound waves, respectively). We also show that (1) the spectra of these wave packets contain the signatures of L, L′, and S, which satisfy the resonance conditions required for excitation of ESD, (2) the peak intensities of these wave packets well exceed the ESD threshold values, and (3) the speed of the electron beam estimated using the resonance conditions is very close to the typical observed speeds of the IP shock accelerated electron beams. The implication of these findings is that (1) the shock accelerated electron beams probably are stabilized by the three wave interaction
L
→
L
′
+
S
, and (2) the second harmonic radio emission
T
2
f
pe
of solar type II radio bursts probably is excited by the three wave merging
L
+
L
′
→
T
2
f
pe
.
Funder
NASA ∣ Goddard Space Flight Center
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献