Cloud Parameterizations and their Effect on Retrievals of Exoplanet Reflection Spectroscopy

Author:

Mukherjee SagnickORCID,Batalha Natasha E.ORCID,Marley Mark S.ORCID

Abstract

Abstract Future space-based direct imaging missions will perform low-resolution (R < 100) optical (0.3–1 μm) spectroscopy of planets, thus enabling reflected spectroscopy of cool giants. Reflected light spectroscopy is encoded with rich information about the scattering and absorbing properties of planet atmospheres. Given the diversity of clouds and hazes expected in exoplanets, it is imperative that we solidify the methodology to accurately and precisely retrieve these scattering and absorbing properties that are agnostic to cloud species. In particular, we focus on determining how different cloud parameterizations affect resultant inferences of both cloud and atmospheric composition. We simulate mock observations of the reflected spectra from three top-priority direct imaging cool giant targets with different effective temperatures, ranging from 135 to 533 K. We perform retrievals of cloud structure and molecular abundances on these three planets using four different parameterizations, each with an increasing level of cloud complexity. We find that the retrieved atmospheric and scattering properties depend strongly on the choice of cloud parameterization. For example, parameterizations that are too simplistic tend to overestimate the abundances. Overall, we are unable to retrieve precise/accurate gravity beyond ±50%. Lastly, we find that even reflected light spectroscopy with a low signal-to-noise ratio of 5 and low R = 40 gives cursory zeroth-order insights into the position of the cloud deck relative to the molecular and Rayleigh optical depth level.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3