A Star-sized Impact-produced Dust Clump in the Terrestrial Zone of the HD 166191 System

Author:

Su Kate Y. L.ORCID,Kennedy Grant M.ORCID,Schlawin EverettORCID,Jackson Alan P.ORCID,Rieke G. H.ORCID

Abstract

Abstract We report on five years of 3–5 μm photometry measurements obtained by warm Spitzer to track the dust debris emission in the terrestrial zone of HD 166191 in combination with simultaneous optical data. We show that the debris production in this young (∼10 Myr) system increased significantly in early 2018 and reached a record high level (almost double by mid 2019) by the end of the Spitzer mission (early 2020), suggesting intense collisional activity in its terrestrial zone likely due to either initial assembling of terrestrial planets through giant impacts or dynamical shake-up from unseen planet-mass objects or recent planet migration. This intense activity is further highlighted by detecting a star-size dust clump, passing in front of the star, in the midst of its infrared brightening. We constrain the minimum size and mass of the clump using multiwavelength transit profiles and conclude that the dust clump is most likely created by a large impact involving objects of several hundred kilometers in size with an apparent period of 142 days (i.e., 0.62 au, assuming a circular orbit). The system’s evolutionary state (right after the dispersal of its gas-rich disk) makes it extremely valuable to learn about the process of terrestrial-planet formation and planetary architecture through future observations.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. JWST-TST High Contrast: Asymmetries, Dust Populations, and Hints of a Collision in the β Pictoris Disk with NIRCam and MIRI;The Astronomical Journal;2024-01-22

2. Abundant sub-micron grains revealed in newly discovered extreme debris discs;Monthly Notices of the Royal Astronomical Society;2024-01-13

3. Diversity of exoplanets;Reference Module in Earth Systems and Environmental Sciences;2024

4. A Primordial Origin for the Gas-rich Debris Disks around Intermediate-mass Stars;The Astrophysical Journal Letters;2023-12-01

5. RZ Piscium Hosts a Compact and Highly Perturbed Debris Disk;The Astrophysical Journal;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3