Observations of Waves and Structures by Frequency–Wavenumber Spectrum in Solar Wind Turbulence

Author:

Zhao L.-L.ORCID,Zank G. P.ORCID,Nakanotani M.ORCID,Adhikari L.ORCID

Abstract

Abstract A well-known shortcoming of single-spacecraft spectral analysis is that only the 1D wavenumber spectrum can be observed, assuming the characteristic wave propagation speed is much smaller than the solar wind flow speed. This limitation has motivated an extended debate about whether fluctuations observed in the solar wind are waves or structures. Multispacecraft analysis techniques can be used to calculate the wavevector independent of the observed frequency, thus allowing one to study the frequency–wavenumber spectrum of turbulence directly. The dispersion relation for waves can be identified, which distinguishes them from nonpropagating structures. We use magnetic field data from the four Magnetospheric Multiscale (MMS) spacecraft to measure the frequency–wavenumber spectrum of solar wind turbulence based on the k-filtering and phase differencing techniques. Both techniques have been used successfully in the past for the Earth’s magnetosphere, although applications to solar wind turbulence have been limited. We conclude that the solar wind turbulence intervals observed by MMS show features of nonpropagating structures that are associated with frequencies close to zero in the plasma rest frame. However, there is no clear evidence of propagating Alfvén waves that have a nonzero rest-frame frequency. The lack of waves may be due to instrument noise and spacecraft separation. Our results support the idea of turbulence dominated by quasi-2D structures.

Funder

NASA ∣ NASA Headquarters

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropy of Density Fluctuations in the Solar Wind at 1 au;The Astrophysical Journal;2024-05-29

2. Characterization of Turbulent Fluctuations in the Sub-Alfvénic Solar Wind;The Astrophysical Journal;2024-04-26

3. Laboratory‐Space Comparisons of Alfvén Waves;Geophysical Monograph Series;2024-04-12

4. Effects of Nonzero-frequency Fluctuations on Turbulence Spectral Observations;The Astrophysical Journal Letters;2024-02-01

5. Linear Mode Decomposition in Magnetohydrodynamics Revisited;The Astrophysical Journal Supplement Series;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3