No Umbrella Needed: Confronting the Hypothesis of Iron Rain on WASP-76b with Post-processed General Circulation Models

Author:

Savel Arjun B.ORCID,Kempton Eliza M.-R.ORCID,Malik MatejORCID,Komacek Thaddeus D.ORCID,Bean Jacob L.ORCID,May Erin M.ORCID,Stevenson Kevin B.ORCID,Mansfield MeganORCID,Rauscher EmilyORCID

Abstract

Abstract High-resolution spectra are unique indicators of three-dimensional (3D) processes in exoplanetary atmospheres. For instance, in 2020, Ehrenreich et al. reported transmission spectra from the ESPRESSO spectrograph yielding an anomalously large Doppler blueshift from the ultrahot Jupiter WASP-76b. Interpretations of these observations invoke toy model depictions of gas-phase iron condensation in lower-temperature regions of the planet’s atmosphere. In this work, we forward model the atmosphere of WASP-76b with double-gray general circulation models (GCMs) and ray-striking radiative transfer to diagnose the planet’s high-resolution transmission spectrum. We confirm that a physical mechanism driving strong east–west asymmetries across the terminator must exist to reproduce large Doppler blueshifts in WASP-76b’s transmission spectrum. We identify low atmospheric drag and a deep radiative-convective boundary as necessary components of our GCM to produce this asymmetry (the latter is consistent with existing Spitzer phase curves). However, we cannot reproduce either the magnitude or the time-dependence of the WASP-76b Doppler signature with gas-phase iron condensation alone. Instead, we find that high-altitude, optically thick clouds composed of Al2O3, Fe, or Mg2SiO4 provide reasonable fits to the Ehrenreich et al. observations—with marginal contributions from condensation. This fit is further improved by allowing a small orbital eccentricity (e ≈ 0.017), consistent with prior WASP-76b orbital constraints. We additionally validate our forward-modeled spectra by reproducing lines of nearly all species detected in WASP-76b by Tabernero et al. Our procedure’s success in diagnosing phase-resolved Doppler shifts demonstrates the benefits of physical, self-consistent, 3D simulations in modeling high-resolution spectra of exoplanet atmospheres.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3