Constraints on Primordial Magnetic Fields from High Redshift Stellar Mass Density

Author:

Zhang QileORCID,Li Shang,Tan Xiu-HuiORCID,Xia Jun-Qing

Abstract

Abstract Primordial magnetic fields (PMFs) play a pivotal role in influencing small-scale fluctuations within the primordial density field, thereby enhancing the matter power spectrum within the context of the ΛCDM model at small scales. These amplified fluctuations accelerate the early formation of galactic halos and stars, which can be observed through advanced high-redshift observational techniques. Therefore, stellar mass density (SMD) observations, which provide significant opportunities for detailed studies of galaxies at small scales and high redshifts, offer a novel perspective on small-scale cosmic phenomena and constrain the characteristics of PMFs. In this study, we compile 14 SMD data points at redshifts z > 6 and derive stringent constraints on the parameters of PMFs, which include the amplitude of the magnetic field at a characteristic scale of λ = 1 Mpc, denoted as B 0, and the spectral index of the magnetic field power spectrum, n B . At 95% confidence level, we establish upper limits of B 0 < 4.44 nG and n B < −2.24, along with a star formation efficiency of approximately f * 0 0.1 . If we fix n B at specific values, such as −2.85, −2.9, and −2.95, the 95% upper limits for the amplitude of the magnetic field can be constrained to 1.33, 2.21, and 3.90 nG, respectively. Finally, we attempt to interpret recent early observations provided by the James Webb Space Telescope using the theory of PMFs and find that by selecting appropriate PMF parameters, it is possible to explain these results without significantly increasing the star formation efficiency.

Funder

National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3