Return of 4U 1730–22 after 49 yr Silence: The Peculiar Burst Properties of the 2021/2022 Outbursts Observed by Insight-HXMT

Author:

Chen Yu-PengORCID,Zhang Shu,Ji Long,Zhang Shuang-NanORCID,Wang Peng-JuORCID,Kong Ling-DaORCID,Chang ZhiORCID,Peng Jing-QiangORCID,Shui Qing-CangORCID,Li JianORCID,Li Zhao-ShengORCID,Tao LianORCID,Ge Ming-YuORCID,Qu Jin-LuORCID

Abstract

Abstract Staying in quiescence for 49 yr, 4U 1730–22 became active and had two outbursts in 2021 and 2022; 10 thermonuclear X-ray bursts were detected with Insight-HXMT. Among them, the faintest burst showed a double-peaked profile, placing the source as the seventh accreting neutron star (NS) exhibiting double-peaked type I X-ray bursts; the other bursts showed photospheric radius expansion (PRE). The properties of a double-peaked non-PRE burst indicate that it could be related to a stalled burning front. For the five bright PRE bursts, apart from the emission from the neutron star (NS) surface, we find the residuals both in the soft (<3 keV) and hard (>10 keV) X-ray bands. Time-resolved spectroscopy reveals that the excess can be attributed to an enhanced preburst/persistent emission or the Comptonization of the burst emission by the corona. We find, the burst emission shows a rise until the photosphere touches down to the NS surface rather than the theoretical predicted constant Eddington luminosity. The shortage of the burst emission in the early rising phase is beyond the occlusion by the disk. We speculate that the findings above are due to that the obscured part (not only the lower part) of the NS surface is exposed to the line of sight due to the evaporation of the obscured material by the burst emission, or the burst emission is anisotropic (ξ > 1) in the burst early phase. In addition, based on the fluxes of PRE bursts at their touchdown times, we derive a distance estimation as 9.0–12.4 kpc.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3