Linear Stability Analysis of a Magnetic Rotating Disk with Ohmic Dissipation and Ambipolar Diffusion

Author:

Das IndraniORCID,Basu ShantanuORCID

Abstract

Abstract We perform a linear analysis of the stability of isothermal, rotating, magnetic, self-gravitating sheets that are weakly ionized. The magnetic field and rotation axis are perpendicular to the sheet. We include a self-consistent treatment of thermal pressure, gravitational, rotational, and magnetic (pressure and tension) forces together with two nonideal magnetohydrodynamic (MHD) effects (ohmic dissipation and ambipolar diffusion) that are treated together for their influence on the properties of gravitational instability for a rotating sheetlike cloud or disk. Our results show that there is always a preferred length scale and associated minimum timescale for gravitational instability. We investigate their dependence on important dimensionless free parameters of the problem: the initial normalized mass-to-flux ratio μ 0, the rotational Toomre parameter Q, the dimensionless ohmic diffusivity η ˜ OD , 0 , and the dimensionless neutral–ion collision time τ ˜ ni , 0 , which is a measure of the ambipolar diffusivity. One consequence of η ˜ OD , 0 is that there is a maximum preferred length scale of instability that occurs in the transcritical (μ 0 ≳ 1) regime, qualitatively similar to the effect of τ ˜ ni , 0 , but with quantitative differences. The addition of rotation leads to a generalized Toomre criterion (that includes a magnetic dependence) and modified length scales and timescales for collapse. When nonideal MHD effects are also included, the Toomre criterion reverts back to the hydrodynamic value. We apply our results to protostellar disk properties in the early embedded phase and find that the preferred scale of instability can significantly exceed the thermal (Jeans) scale and the peak preferred fragmentation mass is likely to be ∼10–90 M Jup.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3