A Misfired Outburst in the Neutron Star X-Ray Binary Centaurus X-4

Author:

Baglio M. C.ORCID,Saikia P.ORCID,Russell D. M.ORCID,Homan J.ORCID,Waterval S.ORCID,Bramich D. M.,Campana S.ORCID,Lewis F.ORCID,Eijnden J. Van denORCID,Alabarta K.ORCID,Covino S.ORCID,D’Avanzo P.,Goldoni P.,Masetti N.ORCID,Muñoz-Darias T.ORCID

Abstract

Abstract We report on a long-term optical monitoring of the neutron star X-ray binary Centaurus X-4 performed during the last 13.5 yr. This source has been in quiescence since its outburst in 1979. Our monitoring reveals the overall evolution of the accretion disk; we detect short-duration flares, likely originating also in the disk, superimposed with a small-amplitude (<0.1 mag) ellipsoidal modulation from the companion star due to geometrical effects. A long-term (∼2300 days) downward trend, followed by a shorter (∼1000 days) upward one, is observed in the disk light curve. Such a rise in the optical has been observed for other X-ray binaries preceding outbursts, as predicted by the disk instability model. For Cen X-4, the rise of the optical flux proceeded for ∼3 yr, and culminated in a flux increase at all wavelengths (optical–UV–X-rays) at the end of 2020. This increase faded after ∼2 weeks, without giving rise to a full outburst. We suggest that the propagation of an inside-out heating front was ignited due to a partial ionization of hydrogen in the inner disk. The propagation might have stalled soon after the ignition due to the increasing surface density in the disk that the front encountered while propagating outward. The stall was likely eased by the low-level irradiation of the outer regions of the large accretion disk, as shown by the slope of the optical/X-ray correlation, suggesting that irradiation does not play a strong role in the optical, compared to other sources of emission.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3