CHORUS. IV. Mapping the Spatially Inhomogeneous Cosmic Reionization with Subaru HSC

Author:

Yoshioka TakehiroORCID,Kashikawa NobunariORCID,Inoue Akio K.ORCID,Yamanaka Satoshi,Shimasaku KazuhiroORCID,Harikane YuichiORCID,Shibuya Takatoshi,Momose RiekoORCID,Ito KeiORCID,Liang YongmingORCID,Ishimoto RikakoORCID,Takeda Yoshihiro,Ouchi MasamiORCID,Lee Chien-HsiuORCID

Abstract

Abstract Spatial inhomogeneity is one of the important features for understanding the reionization process; however, it has not yet been fully quantified. To map this inhomogeneous distribution, we simultaneously detect Lyα emitters (LAEs) and Lyman-break galaxies (LBGs) at z ∼ 6.6 from the Subaru/Hyper Suprime-Cam large-area (∼1.5 deg2 = 34,000 cMpc2) deep survey. We estimate the neutral fraction, x HI, from the observed number density ratio of LAEs to LBGs, n(LAE)/n(LBG), using numerical radiative transfer simulations, in which model galaxies are selected to satisfy the observed selection function. While the average x HI within the field of view is found to be x HI < 0.4, which is consistent with previous studies, the variation of n(LAE)/n(LBG) within the field of view for every 140 pMpc2 area is found to be as large as a factor of 3. This may suggest a spatially inhomogeneous topology of reionization, but it also leaves open the possibility that the variation is based on the inherent large-scale structure of the galaxy distribution. Based on the simulations, it may be difficult to distinguish between the two from the current survey. We also find that LAEs in the high-LAE-density region are more numerous at high EW0, supporting the fact that the observed n(LAE)/n(LBG) is more or less driven by the neutral fraction, though the statistical significance is not high.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3