Infrared Band Strengths of Dangling OH Features in Amorphous Water at 20 K

Author:

Hasegawa TakeshiORCID,Yanagisawa Hiroto,Nagasawa Takumi,Sato ReoORCID,Numadate NaokiORCID,Hama TetsuyaORCID

Abstract

Abstract Infrared (IR) spectra of vapor-deposited amorphous water at low temperatures show two weak peaks at around 3720 and 3696 cm−1 assigned to free-OH stretching modes of two- and three-coordinated water molecules (so-called “dangling” OH bonds), respectively, on the ice surface. A recent JWST observation first succeeded in detection of a potential dangling OH feature at 3664 cm−1 for ices in molecular clouds, highlighting the importance of dangling OH bonds in interstellar ice chemistry. A lack of band strengths of these features at low temperatures restricts the quantification of dangling OH bonds from IR spectra, hindering development of a molecular-level understanding of the surface structure and chemistry of ice. Using IR multiple-angle incidence resolution spectrometry, we quantified the band strengths of two- and three-coordinated dangling OH features in amorphous water at 20 K as being 4.6 ± 1.6 × 10−18 and 9.1 ± 1.0 × 10−18 cm molecule−1, respectively. These values are more than an order of magnitude lower than band strengths of bulk-water molecules in ice and liquid water and are similar to those of H2O monomers confined in solid matrices. Adsorption of carbon monoxide with dangling OH bonds results in the appearance of a new broad dangling OH feature at 3680–3620 cm−1, with a band strength of 1.8 ± 0.1 × 10−17 cm molecule−1. The band strengths of dangling OH features determined in this study advance our understanding of the surface structure of interstellar ice analogs and recent IR observations of the JWST.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Kurita Water and Environment Foundation

Sumitomo Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3