Lensing Reconstruction from the Cosmic Microwave Background Polarization with Machine Learning

Author:

Yan Ye-Peng,Wang Guo-JianORCID,Li Si-Yu,Yan Yang-Jie,Xia Jun-Qing

Abstract

Abstract The lensing effect of the cosmic microwave background (CMB) is a powerful tool for our study of the distribution of matter in the universe. The quadratic estimator (QE) method, which is widely used to reconstruct lensing potential, has been known to be suboptimal for the low noise level polarization data from next-generation CMB experiments. To improve the performance of the reconstruction, other methods, such as the maximum-likelihood estimator and machine-learning algorithms, have been developed. In this work, we present a deep convolutional neural network model named the Residual Dense Local Feature U-net (RDLFUnet) for reconstructing the CMB lensing convergence field. By simulating lensed CMB data with different noise levels to train and test network models, we find that for noise levels less than 5 μK-arcmin, RDLFUnet can recover the input gravitational potential with a higher signal-to-noise ratio than the previous deep-learning and traditional QE methods at almost the entire observation scale.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3