Nucleosynthesis of Binary-stripped Stars

Author:

Farmer R.ORCID,Laplace E.ORCID,Ma Jing-zeORCID,de Mink S. E.ORCID,Justham S.ORCID

Abstract

Abstract The cosmic origin of the elements, the fundamental chemical building blocks of the universe, is still uncertain. Binary interactions play a key role in the evolution of many massive stars, yet their impact on chemical yields is poorly understood. Using the MESA stellar evolution code, we predict the chemical yields ejected in wind mass loss and the supernovae of single and binary-stripped stars. We do this with a large 162-isotope nuclear network at solar metallicity. We find that binary-stripped stars are more effective producers of the elements than single stars, due to their increased mass loss and an increased chance to eject their envelopes during a supernova. This increased production by binaries varies across the periodic table, with F and K being more significantly produced by binary-stripped stars than single stars. We find that the 12C/13C could be used as an indicator of the conservativeness of mass transfer, as 13C is preferentially ejected during mass transfer while 12C is preferentially ejected during wind mass loss. We identify a number of gamma-ray-emitting radioactive isotopes that may be used to help constrain progenitor and explosion models of core-collapse supernovae with next-generation gamma-ray detectors. For single stars we find that 44V and 52Mn are strong probes of the explosion model, while for binary-stripped stars it is 48Cr. Our findings highlight that binary-stripped stars are not equivalent to two single stars and that detailed stellar modeling is needed to predict their final nucleosynthetic yields.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectacular Nucleosynthesis from Early Massive Stars;The Astrophysical Journal Letters;2024-01-31

2. The impact of binary stars on the dust and metal evolution of galaxies;Monthly Notices of the Royal Astronomical Society;2023-11-06

3. Oxygen, sulfur, and iron radial abundance gradients of classical Cepheids across the Galactic thin disk;Astronomy & Astrophysics;2023-10

4. Observational predictions for Thorne–Żytkow objects;Monthly Notices of the Royal Astronomical Society;2023-07-03

5. Modeling the Chemical Enrichment History of the Bulge Fossil Fragment Terzan 5;The Astrophysical Journal;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3