Thermocline Depth on Water-rich Exoplanets

Author:

Lai YanhongORCID,Yang JunORCID

Abstract

Abstract Water-rich exoplanets are a type of terrestrial planet that is water-rich and whose ocean depth can reach tens to hundreds of kilometers with no exposed continents. Due to the lack of exposed continents, neither western boundary current nor coastal upwelling exists, and ocean overturning circulation becomes the most important way to return the nutrients deposited in the deep ocean back to the thermocline and to the surface ocean. Here we investigate the depth of the thermocline in both wind-dominated and mixing-dominated systems on water-rich exoplanets using the global ocean model MITgcm. We find that the wind-driven circulation is dominated by overturning cells through Ekman pumping and subduction and by zonal (west–east) circum-longitudinal currents, similar to the Antarctic Circumpolar Current on Earth. The wind-influenced thermocline depth shows little dependence on the ocean depth, and under a large range of parameters, the thermocline is restricted within the upper layers of the ocean. The mixing-influenced thermocline is limited within the upper 10 km of the ocean and cannot reach the bottom of the ocean even under extremely strong vertical mixing. The scaling theories for the thermocline depth on Earth are applicable for the thermocline depth on water-rich exoplanets. However, due to the lack of exposed continents, the zonal and meridional flow speeds are not in the same magnitude as that in the oceans of Earth, which results in scaling relationships for water-rich exoplanets being a little different from that used on Earth.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3