Hubble Space Telescope Proper Motion Measurements of Supernova Remnant N132D: Center of Expansion and Age

Author:

Banovetz JohnORCID,Milisavljevic DanORCID,Sravan Niharika,Weil Kathryn E.ORCID,Subrayan BhagyaORCID,Fesen Robert A.ORCID,Patnaude Daniel J.ORCID,Plucinsky Paul P.ORCID,Law Charles J.ORCID,Blair William P.ORCID,Morse Jon A.ORCID

Abstract

Abstract We present proper motion measurements of the oxygen-rich ejecta of the LMC supernova remnant N132D using two epochs of Hubble Space Telescope Advanced Camera for Surveys data spanning 16 years. The proper motions of 120 individual knots of oxygen-rich gas were measured and used to calculate a center of expansion (CoE) of α = 5h25m01.ˢ71 and δ = −69°38′41.″64 (J2000) with a 1σ uncertainty of 2.″90. This new CoE measurement is 9.″2 and 10.″8 from two previous CoE estimates based on the geometry of the optically emitting ejecta. We also derive an explosion age of 2770 ± 500 yr, which is consistent with recent age estimates of ≈2500 yr made from 3D ejecta reconstructions. We verified our estimates of the CoE and age using a new automated procedure that detected and tracked the proper motions of 137 knots, with 73 knots that overlap with the visually identified knots. We find that the proper motions of the ejecta are still ballistic, despite the remnant’s age, and are consistent with the notion that the ejecta are expanding into an interstellar medium cavity. Evidence for explosion asymmetry from the parent supernova is also observed. Using the visually measured proper motion measurements and corresponding CoE and age, we compare N132D to other supernova remnants with proper motion ejecta studies.

Funder

Dan Milisavljevic

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Indoor Motion Measurement Technology based on SLAM Algorithm in Underground Engineering;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3