A Comparative Analysis of Machine-learning Models for Solar Flare Forecasting: Identifying High-performing Active Region Flare Indicators

Author:

Sinha SuvadipORCID,Gupta OmORCID,Singh VishalORCID,Lekshmi B.ORCID,Nandy DibyenduORCID,Mitra DhrubadityaORCID,Chatterjee SaikatORCID,Bhattacharya SourangshuORCID,Chatterjee SaptarshiORCID,Srivastava NanditaORCID,Brandenburg AxelORCID,Pal SanchitaORCID

Abstract

Abstract Solar flares create adverse space weather impacting space- and Earth-based technologies. However, the difficulty of forecasting flares, and by extension severe space weather, is accentuated by the lack of any unique flare trigger or a single physical pathway. Studies indicate that multiple physical properties contribute to active region flare potential, compounding the challenge. Recent developments in machine learning (ML) have enabled analysis of higher-dimensional data leading to increasingly better flare forecasting techniques. However, consensus on high-performing flare predictors remains elusive. In the most comprehensive study to date, we conduct a comparative analysis of four popular ML techniques (k nearest neighbors, logistic regression, random forest classifier, and support vector machine) by training these on magnetic parameters obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for the entirety of solar cycle 24. We demonstrate that the logistic regression and support vector machine algorithms perform extremely well in forecasting active region flaring potential. The logistic regression algorithm returns the highest true skill score of 0.967 ± 0.018, possibly the highest classification performance achieved with any strictly parametric study. From a comparative assessment, we establish that magnetic properties like total current helicity, total vertical current density, total unsigned flux, R_VALUE, and total absolute twist are the top-performing flare indicators. We also introduce and analyze two new performance metrics, namely, severe and clear space weather indicators. Our analysis constrains the most successful ML algorithms and identifies physical parameters that contribute most to active region flare productivity.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3