Kernel Phase and Coronagraphy with Automatic Differentiation

Author:

Pope Benjamin J. S.ORCID,Pueyo LaurentORCID,Xin YinziORCID,Tuthill Peter G.ORCID

Abstract

Abstract The accumulation of aberrations along the optical path in a telescope produces distortions and speckles in the resulting images, limiting the performance of cameras at high angular resolution. It is important to achieve the highest possible sensitivity to faint sources, using both hardware and data analysis software. While analytic methods are efficient, real systems are better modeled numerically, but numerical models of complicated optical systems with many parameters can be hard to understand, optimize, and apply. Automatic differentiation or “backpropagation” software developed for machine-learning applications now makes calculating derivatives with respect to aberrations in arbitrary planes straightforward for any optical system. We apply this powerful new tool to the problem of high-angular-resolution astronomical imaging. Self-calibrating observables such as the “closure phase” or “bispectrum” have been widely used in optical and radio astronomy to mitigate optical aberrations and achieve high-fidelity imagery. Kernel phases are a generalization of closure phases valid in the limit of small phase errors. Using automatic differentiation, we reproduce existing kernel phase theory within this framework and demonstrate an extension to the case of a Lyot coronagraph, which is found to have self-calibrating combinations of speckles. which are resistant to phase noise, but only in the very high-wave-front-quality regime. As an illustrative example, we reanalyze Palomar adaptive optics observations of the binary α Ophiuchi, finding consistency between the new pipeline and the existing standard. We present a new Python package morphine that incorporates these ideas, with an interface similar to the popular package poppy, for optical simulation with automatic differentiation. These methods may be useful for designing improved astronomical optical systems by gradient descent.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3