H i Absorption in Low-power Radio AGNs Detected by FAST

Author:

Yu 余 Qingzheng 清正ORCID,Fang 方 Taotao 陶陶ORCID,Wang 王 Junfeng 俊峰ORCID,Wu 武 Jianfeng 剑锋ORCID

Abstract

Abstract We report the discovery of three H i absorbers toward low-power radio active galactic nuclei (AGNs) in a pilot H i absorption survey with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Compared to past studies, FAST observations have explored lower radio powers by ∼0.4 dex and detected these weakest absorbers at given redshifts. By comparing the gas properties and kinematics of sources along radio powers, we aim to explore the interplay between AGN and the surrounding interstellar medium (ISM). Compared to brighter sources at similar redshifts, our observations suggest a slightly lower detection rate of H i absorption lines (∼11.5%) in low-power radio AGNs with log ( P 1.4 GHz / W Hz 1 ) = 21.8 23.7 . The low-power sources with log ( P 1.4 GHz / W Hz 1 ) < 23 have a lower detection rate of ∼6.7%. Due to the incompleteness of the sample, these detection rates may represent the lower limits. The selection of more extended sources and dilution by H i emission at lower redshifts may contribute to the lower detection rate of H i absorption lines. These detected absorbers present relatively narrow line widths and comparable column densities consistent with previous observations. One absorber has a symmetric profile with a large velocity offset, while the other two show asymmetric profiles that can be decomposed into multiple components, suggesting various possibilities of gas origins and kinematics. These H i absorbers may have connections with rotating disks, gas outflows, galactic gas clouds, gas fueling of the AGN, and jet–ISM interactions, which will be further investigated with the upcoming systematic survey and spatially resolved observations.

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3