Measuring He i Stark Line Shapes in the Laboratory to Examine Differences in Photometric and Spectroscopic DB White Dwarf Masses

Author:

Schaeuble M.-A.ORCID,Nagayama T.,Bailey J. E.,Gigosos M. A.,Florido R.,Blouin S.ORCID,Gomez T. A.,Dunlap B.ORCID,Montgomery M. H.ORCID,Winget D. E.ORCID

Abstract

Abstract Accurate helium White Dwarf (DB) masses are critical for understanding the star’s evolution. DB masses derived from the spectroscopic and photometric methods are inconsistent. Photometric masses agree better with currently accepted DB evolutionary theories and are mostly consistent across a large range of surface temperatures. Spectroscopic masses rely on untested He i Stark line-shape and Van der Waals broadening predictions, show unexpected surface temperature trends, and are thus viewed as less reliable. To test this conclusion, we present in this paper detailed He i Stark line-shape measurements at conditions relevant to DB atmospheres (T electron ≈12,000–17,000 K, n electron ≈ 1017 cm−3). We use X-rays from Sandia National Laboratories’ Z-machine to create a uniform ≈120 mm long hydrogen–helium mixture plasma. Van der Waals broadening is negligible at our experimental conditions, allowing us to measure He i Stark profiles only. Hβ, which has been well-studied in our platform and elsewhere, serves as the n e diagnostic. We find that He i Stark broadening models used in DB analyses are accurate within errors at tested conditions. It therefore seems unlikely that line-shape models are solely responsible for the observed spectroscopic mass trends. Our results should motivate the WD community to further scrutinize the validity of other spectroscopic and photometric input parameters, like atmospheric structure assumptions and convection corrections. These parameters can significantly change the derived DB mass. Identifying potential weaknesses in any input parameters could further our understanding of DBs, help elucidate their evolutionary origins, and strengthen confidence in both spectroscopic and photometric masses.

Funder

United States Department of Energy

National Science Foundation

Consejeria de Economia, Industria, Comercio y Conocimiento del Gobierno de Canarias

Spanish Ministry of Science and Innovation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3