AMUSE-Antlia. I. Nuclear X-Ray Properties of Early-type Galaxies in a Dynamically Young Galaxy Cluster

Author:

Hu ZhensongORCID,Su YuanyuanORCID,Li ZhiyuanORCID,Hess Kelley M.ORCID,Kraft Ralph P.ORCID,Forman William R.ORCID,Nulsen Paul E. J.ORCID,Sridhar Sarrvesh S.ORCID,Stroe AndraORCID,Baek JunhyunORCID,Chung AereeORCID,Grupe DirkORCID,Chen HaoORCID,Irwin Jimmy A.ORCID,Jones ChristineORCID,Randall Scott W.ORCID,Roediger ElkeORCID

Abstract

Abstract To understand the formation and growth of supermassive black holes (SMBHs) and their coevolution with host galaxies, it is essential to know the impact of environment on the activity of active galactic nuclei (AGNs). We present new Chandra X-ray observations of nuclear emission from member galaxies in the Antlia cluster, the nearest non-cool core and the nearest merging galaxy cluster, residing at D = 35.2 Mpc. Its inner region, centered on two dominant galaxies NGC 3268 and NGC 3258, has been mapped with three deep Chandra ACIS-I pointings. Nuclear X-ray sources are detected in 7/84 (8.3%) early-type galaxies (ETG) and 2/8 (25%) late-type galaxies with a median detection limit of 8 × 1038 erg s−1. All nuclear X-ray sources but one have a corresponding radio continuum source detected by MeerKAT at the L band. Nuclear X-ray sources detected in early-type galaxies are considered the genuine X-ray counterpart of low-luminosity AGN. When restricted to a detection limit of log ( L X / erg s 1 ) 38.9 and a stellar mass of 10 log ( M / M ) < 11.6 , six of 11 ETGs are found to contain an X-ray AGN in Antlia, exceeding the AGN occupation fraction of 7/39 (18.0%) and 2/12 (16.7%) in the more relaxed, cool core clusters, Virgo and Fornax, respectively, and rivaling that of the AMUSE-Field ETG of 27/49 (55.1%). Furthermore, more than half of the X-ray AGN in Antlia is hosted by its younger subcluster, centered on NGC 3258. We believe that this is because SMBH activity is enhanced in a dynamically young cluster compared to relatively relaxed clusters.

Funder

National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

National Aeronautics and Space Administration

Ministerio de Ciencia e Innovación

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3