Abstract
Abstract
Characterizing the prevalence and properties of faint active galactic nuclei (AGNs) in the early Universe is key for understanding the formation of supermassive black holes (SMBHs) and determining their role in cosmic reionization. We perform a spectroscopic search for broad Hα emitters at z ≈ 4–6 using deep JWST/NIRCam imaging and wide field slitless spectroscopy from the EIGER and FRESCO surveys. We identify 20 Hα lines at z = 4.2–5.5 that have broad components with line widths from ∼1200–3700 km s−1, contributing ∼30%–90% of the total line flux. We interpret these broad components as being powered by accretion onto SMBHs with implied masses ∼107–8
M
⊙. In the UV luminosity range M
UV,AGN+host = −21 to −18, we measure number densities of ≈10−5 cMpc−3. This is an order of magnitude higher than expected from extrapolating quasar UV luminosity functions (LFs). Yet, such AGN are found in only <1% of star-forming galaxies at z ∼ 5. The number density discrepancy is much lower when compared to the broad Hα LF. The SMBH mass function agrees with large cosmological simulations. In two objects, we detect complex Hα profiles that we tentatively interpret as caused by absorption signatures from dense gas fueling SMBH growth and outflows. We may be witnessing early AGN feedback that will clear dust-free pathways through which more massive blue quasars are seen. We uncover a strong correlation between reddening and the fraction of total galaxy luminosity arising from faint AGN. This implies that early SMBH growth is highly obscured and that faint AGN are only minor contributors to cosmic reionization.
Funder
EC ∣ ERC ∣ HORIZON EUROPE European Research Council
Publisher
American Astronomical Society
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献