Simulation for Distributions of Several Geometric Parameters in Nulling Pulsars

Author:

Han X. H.,Yuen R.

Abstract

Abstract We investigate the distributions of the obliquity angle and impact parameters of nulling pulsars of different duty cycles based on the simulation of more than 600,000 samples. We adopt a purely geometric approach for pulsar visibility, in which visible emission is emitted tangentially to the magnetic field line and parallel to the line-of-sight direction. The geometry is incorporated with the model for pulsar magnetospheres of multiple emission states, in which the plasma charge density is dependent on the emission state. We assume that an emission state can only exist between two limiting conditions described by the vacuum and corotation models, respectively. In this model, pulse nulling corresponds to emission switching to a state in which the plasma charge density is zero. The event is detectable only if the switching occurs at source points that lie on a trajectory, whose locus defines the locations of visible emission, within an open-field region. Our results show that detectable nulling is dependent on all three parameters, such that nulling pulsars prefer a small obliquity angle and duty cycle, and tend to have positive impact parameters. We find that the total population of nulling pulsars in our samples is around 23%, of which about 47% possess a duty cycle of 0.1 or smaller. The former implies that there are more nulling pulsars than currently known. Our model predicts that the number of nulling pulsars increases as the obliquity angle decreases, which also implies that the occurrence of nulling in a pulsar should evolve over time.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3