The Spin-down Accretion Regime of Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124

Author:

Liu JirenORCID,Ji Long,Ge MingyuORCID

Abstract

Abstract The relatively high fluxes of the Galactic ultraluminous X-ray pulsar Swift J0243 allow a detailed study of its spin-down regime in the quiescent state for the first time. After the 2017 giant outburst, its spin frequency shows a linearly decreasing trend with some variations due to minor outbursts. The linear spin-down rate is ∼ −1.9 × 10−12 Hz s−1 during the period of lowest luminosity, from which one can infer a dipole field of ∼1.75 × 1013 G. The ν ̇ L relation during the spin-down regime is complex, and ν ̇ is close to zero when the luminosity reaches both the high end (L 38 ∼ 0.3) and the lowest value (L 38 ∼ 0.03). The luminosity of zero torque is different for the giant outburst and other minor outbursts. This is likely due to different accretion flows for different types of outburst, as evidenced by the differences in the spectra and pulse profiles at a similar luminosity for different types of outburst (giant or not). The pulse profile changes from double peaks in the spin-up state to a single broad peak in the low spin-down regime, indicating the emission beam/region is larger in the low spin-down regime. These results show that accretion is still ongoing in the low spin-down regime, for which the neutron star is supposed to be in a propeller state.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Long-term Spin-down Trend of Ultraluminous X-Ray Pulsar M82 X-2;The Astrophysical Journal;2024-01-26

2. Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes;Annual Review of Astronomy and Astrophysics;2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3