Abstract
Abstract
Line intensity mapping (LIM) is emerging as a powerful technique to map the cosmic large-scale structure and to probe cosmology over a wide range of redshifts and spatial scales. We perform Fisher forecasts to determine the optimal design of wide-field ground-based millimeter-wavelength LIM surveys for constraining properties of neutrinos and light relics. We consider measuring the auto-power spectra of several CO rotational lines (from J = 2–1 to J = 6–5) and the [C ii] fine-structure line in the redshift range of 0.25 < z < 12. We study the constraints with and without interloper lines as a source of noise in our analysis, and for several one-parameter and multiparameter extensions of ΛCDM. We show that LIM surveys deployable this decade, in combination with existing cosmic microwave background (CMB; primary) data, could achieve order-of-magnitude improvements over Planck constraints on N
eff and M
ν
. Compared to next-generation CMB and galaxy surveys, a LIM experiment of this scale could achieve bounds that are a factor of ∼3 better than those forecasted for surveys such as EUCLID (galaxy clustering), and potentially exceed the constraining power of CMB-S4 by a factor of ∼1.5 and ∼3 for N
eff and M
ν
, respectively. We show that the forecasted constraints are not substantially affected when enlarging the parameter space, and additionally demonstrate that such a survey could also be used to measure ΛCDM parameters and the dark energy equation of state exquisitely well.
Funder
Swiss National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献