Extreme Variation in Star Formation Efficiency across a Compact, Starburst Disk Galaxy

Author:

Fisher D. B.ORCID,Bolatto A. D.ORCID,Glazebrook K.ORCID,Obreschkow D.,Abraham R. G.ORCID,Kacprzak G. G.,Nielsen N. M.ORCID

Abstract

Abstract We report on the internal distribution of star formation efficiency in IRAS 08339+6517 (hereafter IRAS08), using ∼200 pc resolution CO(2 − 1) observations from NOEMA. The molecular gas depletion time changes by 2 orders-of-magnitude from disk-like values in the outer parts to less than 108 yr inside the half-light radius. This translates to a star formation efficiency per freefall time that also changes by 2 orders-of-magnitude, reaching 50%–100%, different than local spiral galaxies and the typical assumption of constant, low star formation efficiencies. Our target is a compact, massive disk galaxy that has a star formation rate 10× above the z = 0 main sequence; Toomre Q ≈ 0.5−0.7 and high gas velocity dispersion (σ mol ≈ 25 km s−1). We find that IRAS08 is similar to other rotating, starburst galaxies from the literature in the resolved Σ SFR Σ mol N relation. By combining resolved literature studies we find that the distance from the main sequence is a strong indicator of the Kennicutt-Schmidt power-law slope, with slopes of N ≈ 1.6 for starbursts from 100 to 104 M pc−2. Our target is consistent with a scenario in which violent disk instabilities drive rapid inflows of gas. It has low values of Toomre-Q, and also at all radii, the inflow timescale of the gas is less than the depletion time, which is consistent with the flat metallicity gradients in IRAS08. We consider these results in light of popular star formation theories; in general observations of IRAS08 find the most tension with theories in which star formation efficiency is a constant. Our results argue for the need of high-spatial-resolution CO observations for a larger number of similar targets.

Funder

Swinburne University

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3