Direct T e-based Metallicities of z = 2–9 Galaxies with JWST/NIRSpec: Empirical Metallicity Calibrations Applicable from Reionization to Cosmic Noon

Author:

Sanders Ryan L.ORCID,Shapley Alice E.ORCID,Topping Michael W.ORCID,Reddy Naveen A.ORCID,Brammer Gabriel B.ORCID

Abstract

Abstract We report detections of the [O iii]λ4364 auroral emission line for 16 galaxies at z = 2.1–8.7, measured from JWST/NIRSpec observations obtained as part of the Cosmic Evolution Early Release Science (CEERS) survey program. We combine this CEERS sample with 9 objects from the literature at z = 4−9 with auroral-line detections from JWST/NIRSpec and 21 galaxies at z = 1.4−3.7 with auroral-line detections from ground-based spectroscopy. We derive electron temperature (T e) and direct-method oxygen abundances for the combined sample of 46 star-forming galaxies at z = 1.4−8.7. We use these measurements to construct the first high-redshift empirical T e-based metallicity calibrations for the strong-line ratios [O iii]/Hβ, [O ii]/Hβ, R23 = ([O iii]+[O ii])/Hβ, [O iii]/[O ii], and [Ne iii]/[O ii]. These new calibrations are valid over 12+log(O/H) = 7.4−8.3 and can be applied to samples of star-forming galaxies at z = 2−9, leading to an improvement in the accuracy of metallicity determinations at Cosmic Noon and in the Epoch of Reionization. The high-redshift strong-line relations are offset from calibrations based on typical z ∼ 0 galaxies or H ii regions, reflecting the known evolution of ionization conditions between z ∼ 0 and z ∼ 2. Deep spectroscopic programs with JWST/NIRSpec promise to improve statistics at the low and high ends of the metallicity range covered by the current sample, as well as to improve the detection rate of [N ii]λ6585 and thus allow the future assessment of N-based indicators. These new high-redshift calibrations will enable accurate characterizations of metallicity scaling relations at high redshift, improving our understanding of feedback and baryon cycling in the early Universe.

Funder

National Aeronautics and Space Administration

Danmarks Grundforskningsfond

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3