Abstract
Abstract
Tidal disruption events (TDEs) are exotic transients that can lead to temporary super-Eddington accretion onto a supermassive black hole. Such an accretion mode is naturally expected to result in powerful outflows of ionized matter. However, to date such an outflow has only been directly detected in the X-ray band in a single TDE, ASASSN-14li. This outflow has a low velocity of just a few 100 km s−1, although there is also evidence for a second, ultrafast phase. Here we present the detection of a low-velocity outflow in a second TDE, ASASSN-20qc. The high-resolution X-ray spectrum reveals an array of narrow absorption lines, each blueshifted by a few 100 km s−1, which cannot be described by a single photoionization phase. For the first time, we confirm the multiphase nature of a TDE outflow, with at least two phases and two distinct velocity components. One highly ionized phase is outflowing at
910
−
80
+
90
km s−1, while a lower ionization component is blueshifted by
400
−
120
+
100
km s−1. We perform a time-resolved analysis of the X-ray spectrum and detect that, surprisingly, the ionization parameter of the mildly ionized absorber strongly varies over the course of a single 60 ks observation, indicating that its distance from the black hole may be as low as 400 gravitational radii. We discuss these findings in the context of TDEs and compare this newly detected outflow with that of ASASSN-14li.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献