Discovery of a Variable Multiphase Outflow in the X-Ray-emitting Tidal Disruption Event ASASSN-20qc

Author:

Kosec P.ORCID,Pasham D.,Kara E.ORCID,Tombesi F.ORCID

Abstract

Abstract Tidal disruption events (TDEs) are exotic transients that can lead to temporary super-Eddington accretion onto a supermassive black hole. Such an accretion mode is naturally expected to result in powerful outflows of ionized matter. However, to date such an outflow has only been directly detected in the X-ray band in a single TDE, ASASSN-14li. This outflow has a low velocity of just a few 100 km s−1, although there is also evidence for a second, ultrafast phase. Here we present the detection of a low-velocity outflow in a second TDE, ASASSN-20qc. The high-resolution X-ray spectrum reveals an array of narrow absorption lines, each blueshifted by a few 100 km s−1, which cannot be described by a single photoionization phase. For the first time, we confirm the multiphase nature of a TDE outflow, with at least two phases and two distinct velocity components. One highly ionized phase is outflowing at 910 80 + 90 km s−1, while a lower ionization component is blueshifted by 400 120 + 100 km s−1. We perform a time-resolved analysis of the X-ray spectrum and detect that, surprisingly, the ionization parameter of the mildly ionized absorber strongly varies over the course of a single 60 ks observation, indicating that its distance from the black hole may be as low as 400 gravitational radii. We discuss these findings in the context of TDEs and compare this newly detected outflow with that of ASASSN-14li.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-plane tidal disruption of stars in discs of active galactic nuclei;Monthly Notices of the Royal Astronomical Society;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3