Abstract
Abstract
We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad “eclipses” recur with a 2.46 hr period, which increases on a timescale of 1.28(16) × 106 yr. Under the assumption of conservative mass transfer, this suggests a rate near 10−7
M
⊙ yr−1, and this agrees with the estimated accretion rate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves, which suggest strong heating of the low-mass secondary, and very wide orbital minima, which suggest obscuration of a large “corona” around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova—and cataclysmic variable—evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.
Funder
National Science Foundation
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献