Dynamical Stellar Mass-to-light Ratio Gradients: Evidence for Very Centrally Concentrated IMF Variations in ETGs?

Author:

Mehrgan KianuschORCID,Thomas JensORCID,Saglia RobertoORCID,Parikh TaniyaORCID,Neureiter BiancaORCID,Erwin PeterORCID,Bender RalfORCID

Abstract

Abstract Evidence from different probes of the stellar initial mass function (IMF) of massive early-type galaxies (ETGs) has repeatedly converged on IMFs more bottom heavy than in the Milky Way (MW). This consensus has come under scrutiny due to often contradictory results from different methods on the level of individual galaxies. In particular, a number of strong lensing probes are ostensibly incompatible with a non-MW IMF. Radial gradients of the IMF—related to gradients of the stellar mass-to-light ratio ϒ—can potentially resolve this issue. We construct Schwarzschild models allowing for ϒ-gradients in seven massive ETGs with MUSE and SINFONI observations. We find dynamical evidence that ϒ increases toward the center for all ETGs. The gradients are confined to subkiloparsec scales. Our results suggest that constant-ϒ models may overestimate the stellar mass of galaxies by up to a factor of 1.5. For all except one galaxy, we find a radius where the total dynamical mass has a minimum. This minimum places the strongest constraints on the IMF outside the center and appears at roughly 1 kpc. We consider the IMF at this radius characteristic for the main body of each ETG. In terms of the IMF mass-normalization α relative to a Kroupa IMF, we find on average an MW-like IMF 〈α main〉 = 1.03 ± 0.19. In the centers, we find concentrated regions with increased mass normalizations that are less extreme than previous studies suggested, but still point to a Salpeter-like IMF, 〈α cen〉 = 1.54 ± 0.15.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3