Oscillations and Mass Draining that Lead to a Sympathetic Eruption of a Quiescent Filament

Author:

Dai Jun,Zhang QingminORCID,Zhang Yanjie,Xu ZheORCID,Su YingnaORCID,Ji HaishengORCID

Abstract

Abstract In this paper, we present a multiwavelength analysis to mass draining and oscillations in a large quiescent filament prior to its successful eruption on 2015 April 28. The eruption of a smaller filament that was parallel and in close, ∼350″ proximity was observed to induce longitudinal oscillations and enhance mass draining within the filament of interest. The longitudinal oscillation with an amplitude of ∼25 Mm and ∼23 km s−1 underwent no damping during its observable cycle. Subsequently the slightly enhanced draining may have excited a eruption behind the limb, leading to a feedback that further enhanced the draining and induced simultaneous oscillations within the filament of interest. We find significant damping for these simultaneous oscillations, where the transverse oscillations proceeded with the amplitudes of ∼15 Mm and ∼14 km s−1, while the longitudinal oscillations involved a larger displacement and velocity amplitude (∼57 Mm, ∼43 km s−1). The second grouping of oscillations lasted for ∼2 cycles and had a similar period of ∼2 hr. From this, the curvature radius and transverse magnetic field strength of the magnetic dips supporting the filaments can be estimated to be ∼355 Mm and ≥34 G. The mass draining within the filament of interest lasted for ∼14 hr. The apparent velocity grew from ∼35 to ∼85 km s−1, with the transition being coincident with the occurrence of the oscillations. We conclude that two filament eruptions are sympathetic, i.e., the eruption of the quiescent filament was triggered by the eruption of the nearby smaller filament.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3