A Comparative Study of Atmospheric Chemistry with VULCAN

Author:

Tsai Shang-MinORCID,Malik MatejORCID,Kitzmann DanielORCID,Lyons James R.,Fateev AlexanderORCID,Lee ElspethORCID,Heng KevinORCID

Abstract

Abstract We present an update of the open-source photochemical kinetics code VULCAN to include C–H–N–O–S networks and photochemistry. The additional new features are advection transport, condensation, various boundary conditions, and temperature-dependent UV cross sections. First, we validate our photochemical model for hot Jupiter atmospheres by performing an intercomparison of HD 189733b models between Moses et al., Venot et al., and VULCAN, to diagnose possible sources of discrepancy. Second, we set up a model of Jupiter extending from the deep troposphere to upper stratosphere to verify the kinetics for low temperature. Our model reproduces hydrocarbons consistent with observations, and the condensation scheme successfully predicts the locations of water and ammonia ice clouds. We show that vertical advection can regulate the local ammonia distribution in the deep atmosphere. Third, we validate the model for oxidizing atmospheres by simulating Earth and find agreement with observations. Last, VULCAN is applied to four representative cases of extrasolar giant planets: WASP-33b, HD 189733b, GJ 436b, and 51 Eridani b. We look into the effects of the C/O ratio and chemistry of titanium/vanadium species for WASP-33b, we revisit HD 189733b for the effects of sulfur and carbon condensation, the effects of internal heating and vertical mixing (K zz) are explored for GJ 436b, and we test updated planetary properties for 51 Eridani b with S8 condensates. We find that sulfur can couple to carbon or nitrogen and impact other species, such as hydrogen, methane, and ammonia. The observable features of the synthetic spectra and trends in the photochemical haze precursors are discussed for each case.

Funder

EXOCONDENSE

EXOKLEIN

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3